The value of historical injection molding data

Many variables in the beginning stages of process development determine the longevity of process standardization in plastic injection molding. Establishing a repeatable process that provides 100% efficiency with little to no scrap is an important step toward a standardized process.

However, there is a process development stage that is sometimes overlooked because of a hasty or poorly thought-out approach. A true process requires normal process consistencies—fill time, peak pressure and so forth—to ensure that the process that was initially developed holds true to its original standard. But keep in mind that recording historical data can be just as critical to standardization as process development itself.

Historical data are a group of key measurables confirming that standardization has been achieved. These data points also can identify changes that are affecting the initial process and help to analyze steps that need to be taken to revert back to the original process.

This article outlines the value of historical data as they relate to physical conditions outside of normal process control measurements. It will provide three primary examples of what physical data should be recorded, and how to use that information to identify changes occurring within the original molding conditions. It will also provide some insight into how to analyze that data to pinpoint what has changed, and suggest steps that might be taken to correct the inconsistencies.

Barrel and melt temperature

Barrel temperature is a normal recordable that is commonly included on the setup sheet for most companies. Zone setpoints are repeated to ensure that temperature setpoints remain consistent.

However, barrel temperature itself is a key indicator of process change. For instance, if a proven, repeatable process starts to run short/unfilled parts, verifying setpoints might not provide adequate information as to what has changed. Heater bands can wear out, leading to poor heat performance in certain areas of the barrel.

Garrett MacKenzie, the author of this article, will present a free webinar on the key principles of scientific molding methodology on Feb. 13, 2018. He will address such essential topics as process development, recording, monitoring and control; standardization; design optimization experiments; and process optimization. Register now for this webinar. Busy that day? No problem: You can listen to the webinar on demand, but you must register first.

Historical barrel temperature should be measured between bands using a band-type thermal indicator. Laser measurements will work, but are much less reliable. It is also important to record melt temperature for each process you run. When recording melt temperature, it is imperative that the press be shut down during a running condition to ensure that the barrel has been properly heat soaked. This data is helpful, for example, when a heater band is working but underperforming. The band will register on the controller as being at temp, but a temperature variance on the barrel itself might help to identify a changing condition.

Mold temperature

Mold temperature is a frequently under-valued and forgotten form of historical data that offer real value to change analysis. Measurements should be taken with the mold in running condition to allow proper heat soak. Band and probe-type thermal measuring devices are again preferred as the best

Comments (0)

Please log in or to post comments.
  • Oldest First
  • Newest First
Loading Comments...