Sponsored By

Nanotechnology Deployed in PET Foam

LNP Colorcomp WQ117945 features improved control over nucleation and cell growth.

Stephen Moore

January 18, 2021

2 Min Read
PET foam
Image: Sabic

Sabic has debuted what it calls a breakthrough material based on advanced nanotechnology that facilitates efficient production of polyethylene terephthalate (PET) foams for core materials in sandwich structures.

LNP Colorcomp WQ117945 features improved control over nucleation and cell growth, resulting in decreased cell size and uniform, narrower cell size distribution. These attributes can reduce the foam’s weight by minimizing resin uptake in sandwich structures.

It can also potentially improve shear strength/strain properties for better fatigue performance. Enhancing PET foams with Sabic’s new LNP Colorcomp compound can address the evolving needs of multiple industries, including marine, building and construction, packaging and wind energy.

“Our novel LNP Colorcomp WQ117945 compound may help to expand adoption of PET foam materials in a wide range of applications, from building insulation and cladding, to boat hulls and decks, to the core of wind turbine blades,” said Sunamita Anunciação, LNP Business Development Manager, Sabic. “In addition to improving PET foam’s mechanical properties, our technology helps reduce weight, which opens new opportunities for sustainability. For example, lighter foam core materials can allow designers to create longer, more-efficient wind blades. Lighter materials also reduce environmental impacts from shipping. Working with our customers, Sabic continues to develop solutions that advance multiple aspects of performance and sustainability.”

Disposal of wind blades is becoming a global concern. Due to their huge size and complexity, most blades are currently sent to landfills. The adoption of PET foams in the core of wind turbine blades offers the industry a strong, light, recyclable option over incumbent materials, such as balsa wood and PVC foam. Weight reduction is also a key issue in wind blade design. Extending blade length to increase the amount of captured energy adds significant weight to the blade.

Sabic’s LNP Colorcomp WQ117945 compound can significantly reduce foam cell size (as much as three-fold) compared to standard nucleating agents such as talc, while decreasing cell size disparity by a factor of up to five. These factors help to reduce resin uptake by the foam during composite manufacture, resulting in a lighter-weight blade.

In terms of strength and other mechanical properties, high-density PET foams can potentially compete with balsa wood, while avoiding wood’s natural variations. Further, as thermoformable polymers, PET foams offer greater freedom in the design and shaping of wind blades as compared to balsa. They also offer stable supply, cost-effectiveness, consistent material properties and much less resin uptake.

Besides being used as an effective nucleating agent for foaming processes such as extrusion foaming, injection foaming and bead foaming, Sabic’s new nanotechnology solution can also act as a rheological modifier for improving melt strength and thermoformability. The nanotechnology Sabic is using can be adapted for other resins besides PET, making it a good candidate for use in a wide range of different industries.

About the Author(s)

Stephen Moore

Stephen has been with PlasticsToday and its preceding publications Modern Plastics and Injection Molding since 1992, throughout this time based in the Asia Pacific region, including stints in Japan, Australia, and his current location Singapore. His current beat focuses on automotive. Stephen is an avid folding bicycle rider, often taking his bike on overseas business trips, and is a proud dachshund owner.

Sign up for the PlasticsToday NewsFeed newsletter.

You May Also Like